

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени А.Н. Туполева

Поверхностное моделирование в SolidWorks

УМК-2007

ЦЕЛЬ КУРСА

По завершении курса, слушатели будут уметь создавать и изменять модели, созданные на основе параметрических поверхностей. Также, слушатели научатся использовать поверхности при проектировании твердотельных моделей сложной формы.

Аудитория

Новые пользователи SolidWorks

Квалификация

Твердотельное моделирование в SolidWorks

Тема от Введение в дисциплину

Введение в каркасную геометрию и моделирование поверхностей

ЛЕКЦИЯ 1

<u> Что такое ТОПОЛОГИЯ</u>

Введение в моделирование поверхностей

Инструментарий моделирования поверхностей

УСреда создания поверхностей

Этерминология конструктора поверхностей

Жиповой процесс моделирования с использованием поверхностей

ЭПодводя итоги ...

Эчто такое ТОПОЛОГИЯ

Тополо́гия (от греч. τόπος — место) — часть геометрии, изучающая в самом общем виде явление непрерывности, а также свойства обобщенных геометрических объектов, не меняющиеся при малых деформациях и не зависящие от способа их задания.

У истоков формирования топологии, как науки, стояли такие ученые, как Эйлер, Жордан, Кантор, Пуанкаре.

•Общая топология

- •Алгебраическая топология
- •Дифференциальная топология

Лента Мебиуса

Поверхность с одной стороной и одним краем – пример объекта, изучаемого в топологии

Жведение в моделирование поверхностей

КАРКАСНАЯ ГЕОМЕТРИЯ

Конструктивными элементами каркасной модели являются ребра и вершины.

Основным преимуществом каркасных моделей является простота, но с их помощью можно моделировать ограниченный класс объектов

ПОВЕРХНОСТНАЯ ГЕОМЕТРИЯ

Поверхностная модель, кроме вершин и ребер содержит грани. Такой способ задания позволяет описывать достаточно сложные трехмерные фигуры.

ТВЕРДОТЕЛЬНАЯ ГЕОМЕТРИЯ

Твердотельная модель, в отличие от поверхностной модели имеет массу. Твердотельная модель, ограниченная криволинейными поверхностями свободной формы, называется *гибридной*.

ЭИнструментарий конструктора (1/2)

От замысла к детальному проекту...

В Solidworks предусмотрен большой набор инструментальных средств для конструирования форм. Он включает в себя такие инструменты создания каркасной геометрии, как точки, линии, оси, плоскости, различные кривые второго порядка, сплайны, элементы пересечения и проецирования.

И

Инструментарий построения:

✓выдавливание и вращение профиля;
 ✓протягивание профиля по траектории и построение поверхности по сечениям...

Типовые операции:

✓перенос, копирование и вращение;
✓удлинение и обрезка
✓зеркальное отображение масштабирование;

√сопряжения скруглением ...

Э Инструментарий конструктора (2/2)

Ассоциативное проектирование...

Проектирование в контексте позволяет вести параллельные работы, контролируя ассоциативность. Каркасная геометрия и поверхности могут быть выполнены в контексте детали и сборки. При изменении конструкции инженер управляет проведением изменений. Конструктор может использовать существующую поверхность и связывать ее с другими деталями, поддерживая параллельное конструирование.

Эсреда создания поверхностей – Интерфейс

ЭСреда создания поверхностей – Трехмерный эскиз

Практикум к Лекции 1

ПРАКТИЧЕСКОЕ УПРАЖНЕНИЕ 1

Настройка интерфейса конструктора поверхностей

Выполните настройку интерфейса для оптимальной работы в среде создания каркасной геометрии, поверхностей и успешного выполнения операций гибридного моделирования.

са 😂 🔓 Са Элементы	• Поверк • Эскиз	DrawCompare SolidWorks Explorer COSMOSXpress	 ペペペペ・シーチ 印 つ つ 回 3 時 分 伊 伊 伊 伊 伊 伊 多 3 4 月 伊 伊 伊 伊 伊 6 4 4 1 2 元 ペペート キャット・ たらも思い、 の の 4 1 2 元 ペペート キャット・ たらも思い、 の の 4 1 2 元 ペペート キャット・ たらもしい、 の の 4 1 2 元 ペペート キャット・ た ちょう 1 1 1 2 1 2 元 ペペート キャット・ た ちょう 1 1 1 2 1 2 元 ペート キャット・ た ちょう 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
	Control Control Image Image Imag	Собъеты эсонаа Собъеты эсонаа Настройен для зонаа Настройен для зонаа Настройен для зонаа Настройен для зонаа Натерить Настройен жарактеристиен Собъеть сечения Проеврить Собъеть сечения Проеврить Собъеть сечения Проеврить Собъеть сечения Проеврить Собъеть сечения Проеврить Собъеть сечения Проеврить Собъеть сечения Проеврить Проеврить Проеврить Проеврить Проеврить Проеврить Проеврить Проеврить Проеврить Собъеть сечения Настройен мено Собъеть сечения	Image: Provide Access Image: Provide Access

ЭТерминология конструктора поверхностей

Деталь – название файла модели. Модель может содержать каркасную геометрию, поверхности и твердые тела.

Тела поверхностей − содержит поверхности.

Твердые тела – содержит все твердые тела, имеющиеся в модели.

Дерево построения – содержит элементы, на основе которых создается каркасная, поверхностная и твердотельная геометрия.

ЯПодводя итоги...

Вы познакомились с общими положениями процесса Моделирования Поверхностей:

 ✓увидели важность поверхностей в процессе моделирования и то, как поверхности могут помочь в создании деталей сложной формы;

 ✓узнали расположение инструментов, используемых при создании каркасной и поверхностной геометрии.

 ✓познакомились с терминологией, которая будет использоваться в процессе создания поверхностей.

✓рассмотрели типовой процесс конструирования с использованием поверхностей.

Тема оз Каркасная геометрия

Вы познакомитесь с созданием элементов каркасной геометрии

ЛЕКЦИЯ 2

Аля чего создается трехмерная каркасная геометрия

Создание точек в трехмерном пространстве

≫оздание линий в трехмерном пространстве ЛЕКЦИЯ 3

Жоздание плоскостей

Жоздание кривых в трехмерном пространстве

Жекомендации при создании каркасной геометрии

ЭПодводя итоги ...

Для чего создается трехмерная каркасная геометрия (1/2)

Часто требуется создавать геометрию, которая определяется трехмерными координатами. Такая геометрия не ограничивается одной плоскостью, и потому не может быть создана средствами Эскиза.

Трехмерные элементы, включающие точки, линии, плоскости и кривые, созданные в трехмерном пространстве называются Каркасной геометрией.

Для чего создается трехмерная каркасная геометрия (2/2)

Каркасная геометрия в первую очередь используется в качестве конструктивной (вспомогательной) для определения более сложных трехмерных элементов, например, кривых или поверхностей.

Каркасная геометрия и Эскизная геометрия могут использоваться вместе для определения более сложных трехмерных элементов.

Жоздание точек в трехмерном пространстве

Вы изучите различные способы создания точек

Точки используются в качестве вспомогательных элементов при создании геометрии любого типа. Точки, также, используются в качестве опорных элементов в процессе моделирования.

🔆 Справа

🖌 Исходная точка

🦹 (-) Трехмерный эскиз2

Созданные в Среде Трехмерного Эскиза, отображаются в Дереве Построений в виде одного общего элемента.

В Дереве Построений Справочная точка отображается в виде отдельного элемента.

Если элементы геометрии выбраны до выбора команды, SolidWorks попытается самостоятельно выбрать метод построения точки.

–Справочная п	почка (2/2) 🕌
Тип	Описание
💽 Центр дуги	Создает точку в центре выбранной дуги или окружности
🐑 Центр грани	Создает точку в центре тяжести выбранной грани. Можно выбирать плоские и неплоские грани.
🗙 Пересечение	Создает точку в месте пересечения двух выбранных объектов. Можно выбирать кромки, кривые, сегменты эскиза и справочные оси.
👍 Проекция	Создает точку в месте нормального проецирования одного объекта на другой. Можно проецировать точки, вершины, конечные точки кривых и сегментов эскизов на плоскости и плоские и неплоские грани.
 По.00мм Расстояние Проценты Равномерно распределить 1 	Создает набор справочных точек вдоль кромок, кривых или сегментов эскиза. Точки создаются с заданным промежутком на основе указанного расстояния, на основе процентного значения или равномерно распределяются по объекту.

-Редактирование точек

Для редактирования точки в составе трехмерного эскиза щелкните Правой Кнопкой Мыши (ПКМ) по любому объекту, принадлежащему этому эскизу.

Для редактирования Справочной точки, щелкните по ней ПКМ.

В дереве построений

В графическом окне

<mark>Лекция 2</mark> ≻Создание линий

Вы изучите различные способы создания линий

Линии используются в качестве направляющих и опорных элементов, осей, направлений и при создании других геометрических элементов. В SolidWorks могут быть созданы линии двух типов.

–Линии в трехмерном эскизе Свойства линии Линия ()(?) ‰ 30% Эскиз Зависимости, наложенные на рехме. Существующие ЭСКИЗ взаимосвязи линию и связывающие ее с Осевая _h другими геометрическими линия примитивами. По умолчанию линия создается В плоскости, 👔 Недоопределен Дополнительные параллельной экрану. Добавить взаимосвязи параметры линии 🔑 Вдоль Х Д Вдоль Ү З→ ВдольZ Дополнительнь настройки 🗶 Зафиксированный Переключаться между x 5.47153963 Параметры V 0.00 плоскостями XY, YZ и ZX Вспомогательная -49.12042773 12 геометрия можно при помощи клавиши x 144.6384309 Бесконечная длина Tab. 14 0.00 Параметры 1 /z -155.24902996 * 175.01629592 Δx Параметры, переключающие тип гройки 🛞 Дополнительны ΔΥ линии и устанавливающие линию Δz конечной/бесконечной длины. Длина линии

Если элементы геометрии выбраны до выбора команды, SolidWorks попытается самостоятельно выбрать метод построения оси.

-Справочная ось (2/2)

Типы доступных вариантов создания Справочных Осей

Тип	Описание
📉 одна линия/кромка/ось	Создает ось по выбранному сегменту эскиза, кромке или оси.
⁄ Две плоскости	Создает ось в месте пересечения двух плоскостей или плоских граней.
🔨 Две точки/вершины	Соединяет линией две точки, вершины или средние точки.
🧌 Цилиндрическая/коническая	Создает линию по оси цилиндрической или конической грани.
🛃 Точка и грань/плоскость	Опускает перпендикуляр из указанной точки, вершины или средние точки на указанную плоскую или неплоскую грань.
	25

–Редактирование линий

Для редактирования линий в составе трехмерного эскиза щелкните ПКМ по любому объекту, принадлежащему этому эскизу.

Для редактирования Справочной оси, щелкните по ней ПКМ.

и выберите «Редактировать определение»

Лекция 2

Практикум к Лекции 2

-ПРАКТИЧЕСКОЕ УПРАЖНЕНИЕ 2

Создание трехмерной твердотельной трубы

Нарисуйте трехмерную траекторию и создайте тонкостенную водопроводную трубу на ее основе. Размеры сечения трубы и траектории – произвольные.

<mark>Лекция 3</mark> ≻Создание плоскостей

Вы изучите различные способы создания плоскостей

Плоскости используются в качестве опорных элементов при создании других объектов и измерениях.

–Плоскости (1/2)

Плоскости можно создавать:

- на основе других плоскостей или плоских граней;

- на основе точек, линий или кривых.

Лекция з

В Дереве Построений Справочная плоскость отображается в виде отдельного элемента.

Если элементы геометрии выбраны до выбора команды, SolidWorks попытается самостоятельно выбрать метод построения оси.

–Плоскость (2/2)

Тип	Описание
론 через линии/точки	Создает плоскость через кромку, ось или линию эскиза и точку, а также – через три точки.
Параллельно плоскости @ точка	Параллельно выбранной плоскости или грани через указанную точку.
90.00градусов	Создает плоскость через кромку, ось или линию эскиза под углом к указанной грани или плоскости.
10.00mm	Параллельно выбранной грани или плоскости на указанном расстоянии
🔎 Перпендикудярно кривой	Создает плоскость перпендикулярно выбранной кривой
На поверхности	Создает плоскость на неплоской грани или угловой поверхности

-Редактирование плоскостей

Лекция 2

Для редактирования определения плоскости щелкните по ней ПКМ в Дереве построения или в Графическом окне и выберите «Редактировать определение».

В дереве построений

Лекция з

Юздание кривых в трехмерном пространстве

Вы изучите различные способы создания кривых

Команды создания кривых вызываются из выпадающего меню или из диспетчера команд.

–Для чего нужны кривые

Кривые используются в качестве направляющих или опорных элементов при создании других объектов, а также – как границы для поверхностей.

Кривые могут быть созданы: по аналитическим зависимостям, по точкам, другим кривым/кромкам или в месте пересечения поверхностей

Лекция з

-Сплайны в трехмерном эскизе (2/2)

–Линия разъема (1/3)

Эта команда проецирует эскиз на криволинейные или плоские грани и делит выбранную поверхность на несколько частей.

Силуэтная линия разъема

–Линия разъема (2/3) 🛛 🔯

Проекционная линия разъема

–Линия разъема (3/3)

Лекция з

–Проекционная кривая (1/2)

Эта команда проецирует эскиз на криволинейные поверхности или создает совокупную проекцию из двух кривых разных эскизов.

Эскиз на грань

–Проекционная кривая (2/2) 🔟

Эта функция создает кривую, представляющую собой пересечение эскизов с двух пересекающихся плоскостей.

Лекция з

Рекомендации при создании каркасной геометрии (1/2)

Вы рассмотрите рекомендации по созданию каркасной геометрии

Для скрытия или отображения всех кривых в модели используйте команду меню **Вид – Кривые**.

Для скрытия или отображения отдельной кривой – щелкните по ней ПКМ и в выпадающем меню выберите «Скрыть» или «Отобразить»

-Использование двух- и трехмерных сплайнов

ЯПодводя итоги...

Вы познакомились с возможностями SolidWorks по созданию элементов каркасной геометрии:

✓как создавать точки, используя различные методы, например, точки по координатам, точки, расположенные на кривой или на поверхности;

✓как создавать линии, используя различные методы, например, линии, проходящие через две точки, через точку в указанном направлении, или линии, касательные к кривой;

✓как создавать плоскости, используя различные методы, например, плоскость смещенная по отношению к указанной плоскости, плоскость через три точки, через точку и линию;

✓как создавать кривые, используя различные методы, например проекция, силуэтная кривая, кривая по координатам, винтовая линия.

Практикум к Лекции 3

-ПРАКТИЧЕСКОЕ УПРАЖНЕНИЕ 3

Создание элементов каркасной геометрии

Ð

Создайте элементы каркасной геометрии для последующего построения поверхностей на их основе.

Тема оз Базовые поверхности

Вы познакомитесь с созданием базовых поверхностей SolidWorks

ЛЕКЦИЯ 4

> Для чего нужны базовые поверхности

> Создание поверхностей по заданному профилю

Создание поверхностей по траектории ЛЕКЦИЯ 5

>Создание эквидистантных поверхностей и поверхностей по кромкам

> Создание поверхностей по сечениям

> Рекомендации по созданию поверхностей

≻ Подводя итоги ...

≻ Для чего нужны базовые поверхности

В процессе конструирования инструментами твердотельного моделирования не всегда удается создать требуемую геометрию. Сложные трехмерные формы часто требуют наличия поверхностей, которые в основном создаются на основе каркасной геометрии

Ключевые понятия

 ✓ При помощи поверхностей можно описывать сложные трехмерные формы.

 ✓ Элементы поверхностей описывают форму. Поэтому, поверхности не имеют толщины.

 Поверхности могут быть полностью интегрированы в твердотельную геометрии.
Изменение поверхностей влияет на твердое

тело.

-Создание поверхностей из профиля

-Создание поверхности по траектории

Поверхность протягивания создается путем протягивания открытого или замкнутого профиля вдоль траектории

Просто посмотрите, как создавать такие поверхности...

50

-Создание поверхности по траектории с направляющими кривыми

Направляющие кривые должны иметь зависимость *Совпадение* или Пронзание с элементами профиля.

-Создание поверхности по траектории с изменением ориентации профиля (1/2)

Поверхность, представляет собой совокупность одинаковых профилей, каждый из которых перпендикулярен траектории.

Поверхность, представляет собой совокупность одинаковых профилей, параллельных исходному профилю

Профиль(Профиль)

-Создание поверхности по траектории с изменением ориентации профиля (**2**/2)

Параметр *Скручивание...* позволяет поворачивать профиль по мере перемещения его вдоль траектории.

Создание эквидистантных поверхностей и поверхностей по кромкам

Вы научитесь создавать поверхности, эквидистантные существующим, а также натягивать поверхности на кромки

–Поверхность, эквидистантная к существующей

Эквидистантная поверхность создается на указанном расстоянии и в выбранном направлении от существующей поверхности или грани

Просто посмотрите, как создавать такие поверхности...

50

Можно создавать эквидистантную поверхность с нулевым смещением.

– Плоская поверхность

Лекция 5

– Заполнить поверхность

Элемент Заполнить поверхность создает заплату на поверхности с любым числом сторон в границах указанных кромок, элементов эскиза или кривых.

Просто посмотрите, как создавать такие поверхности...

 \int_{0}

Выберите 🧭 для создания элемента

≻Создание поверхности по сечениям

Вы научитесь создавать поверхности по сечениям

Первым и/или последним профилем могут являться точки.

– Поверхность По Сечениям – синхронизация сечений

По умолчанию, Solidworks соединяет сечения по линии, проходящей через точки выбора профилей. Иногда это приводит к скручиванию поверхности. Перетаскивая соединители 🕒 , можно синхронизировать сечения поверхности требуемым образом

– Поверхность По Сечениям – направляющие кривые

– Поверхность По Сечениям – управление касательностью

	Поверхность-По сече	Маркер величины касательной	
	Профили По Незамкнутая петля<1 Незамкнутая петля<2 Начальные/конечные ограничения		
	Начальное Касательность к гран Применить ко всем Конечное Касательность к гран Применить ко всем Применить ко всем праничные успоследнем сеч	ажения устанавливает словия в первом и ении	
Управлять касательностью можно только при соединении торцев поверхностей.			

– Поверхность По Сечениям – добавление сечения (1/2)

– Поверхность По Сечениям – добавление сечения (2/2)

Можно добавлять профили путем рассечения имеющейся поверхности

≻Рекомендации по созданию базовых поверхностей

Мы рассмотрим рекомендации по созданию базовых поверхностей

– Ось вращения

Ось вращения элемента может быть любой прямолинейный элемент эскиза. При наличии в эскизе осевой линии Solidworks автоматически выбирает ее в качестве оси вращения

– Выбор контуров

Эскиз для создания поверхности может содержать несколько пересекающихся профилей. С помощью указателя **Выбранные** контуры можно выбрать требуемую комбинацию контуров

– Советы при создании поверхностей

– Профиль следует создавать после траектории и направляющих кривых.

 Траектория и направляющие кривые могут не совпадать по длине:

- если направляющие кривые длиннее траектории, то элемент по траектории будет той же длины, что и траектория;
- если направляющие кривые короче траектории, то длина элемента будет равна кратчайшей направляющей кривой.
- Направляющие кривые могут соединяться в общей точке, являющейся вершиной поверхности вытяжки по траектории.
- В качестве направляющих кривых можно использовать элементы эскизов, кромки моделей и кривые.

≻ Подводя итоги...

Мы рассмотрели возможности Solidworks по созданию базовых поверхностей:

 ✓как создавать поверхности из профиля, используя Вытянутую и Повернутую Поверхность;

✓как создавать Поверхность по траектории;

✓как создавать Поверхность, Эквидистантную существующей поверхности или грани

√как создавать Поверхности по Кромкам;

√как создавать Поверхность по Сечениям.

Практикум к Лекциям 4 и 5 -практическое упражнение 5

Создание поверхностей

Создайте поверхности, составляющие контур будущей модели мыши.

Тема оц Операции с поверхностями

Вы научитесь выполнять операции с поверхностями

ЛЕКЦИЯ 6

- > Для чего выполняются операции над поверхностями
- Сшивание поверхностей
- > Отсечение поверхностей

ЛЕКЦИЯ₇

- > Скругление поверхностей
- > Экстраполяция поверхностей
- Преобразования поверхностей
- Подводя итоги ...

> Для чего выполняются операции над поверхностями? (1/2)

После создания, базовые поверхности состоят из конструктивных элементов, которые в большинстве своем не соответствуют окончательной форме изделия. Требуется выполнить ряд операций типа отсечения, соединения, удлинения или преобразований для получения геометрии требуемой формы.

- ✓ Операции используются для получения окончательной формы поверхностей.
- ✓ Элементы, участвующие в преобразованиях, сохраняются в истории построения, но не отображаются.

≻ Для чего выполняются операции над поверхностями? (2/2)

Операции, подобные масштабированию или аффинным преобразованиям, позволяют, при необходимости, изменить размер детали. Операции, подобные копированию, выполняются на элементах поверхностей для изменения положения детали в текущей системе координат.

Ключевые понятия

✓ Афинные преобразования – важная операция при различном изменении размеров детали в различных направлениях текущей системы координат.

 ✓ Копирование полезно, когда требуется выполнить некоторые преобразования над телом, имея копию исходного тела.

≻ Сшивание поверхностей

Вы научитесь создавать из нескольких поверхностей одну общую поверхность

– Для чего сшивают поверхности

≻ Отсечение поверхностей

Вы научитесь обрезать поверхности

– Для чего отсекают поверхности

Поверхности можно обрезать одну относительно другой для того, чтобы сохранить в модели одну из частей. Для этого требуются не менее двух пересекающихся поверхностей.

Отсечение поверхностей (1/2)

Лекция 6

поверхности

– Отсечение поверхностей (2/2)

Лекция 6

– Для чего выполняют скругления

Скругления давно используются в промышленности для удаления острых кромок с деталей. Скругления вдоль кромок поверхностей уклона облегчают извлечение заготовки из формы. Кроме того, скругления позволяют снизить концентрацию напряжений в деталях. Сейчас трудно назвать ту область промышленного производства, где бы ни использовались скругления.

касательного к трем указанным поверхностям.

> Экстраполяция поверхностей

Вы научитесь удлинять поверхности

– Для чего удлиняют поверхности

Поверхности можно экстраполировать путем их удлинения на некоторую величину или до других элементов с целью последующего отсечения или получения элементов пересечения.

> Преобразования поверхностей

Вы изучите различные виды преобразований, применяемых к

– Для чего выполняют преобразования

Преобразования выполняются для изменения размера, местоположения, ориентации и количества твердых тел и поверхностей.

В SolidWorks можно выполнить пять типов преобразований

тела r

0

(x

(,

(Z

Ľ,

Ľ,

rz,

Лекция 7 😒 Перем... – Поворот поверхностей тела 😵 Переместить / копирова... **Ø** 🗶 🥐 Переместить/Копировать Вкладка «Вращать» содержит поля, управляющие положение центра вращения и углами Копировать поворота в трех плоскостях Преобразовать Вращать Координаты нулевой 0.00MM точки в текущей СК v * 0.00MM v . 0.00MM × Углы поворота * 0.00градусов относительно осей v 0.00градусов * Х, Ү, Ζ в текущей СК * 0.00градусов В качестве оси поворота может выступать прямолинейная кромка

– Зеркальное отображение и массивы поверхностей

Линейный массив	Круговой массив	Зеркальное отображение
Пинейный массив Э Э	Ф Круговой массив Ф В ? Настройки С Збо.00градусов Збо.00градусов	Зеркальное отражение Эркально отразить Зеркально отразить Грань/плоскость Копировать элементы
Направление 2 Копировать элементы Копировать грани Копировать тела С	 Равный шаг Копировать элементы Копировать грани Копировать грани 	Копировать грани 😒 Копировать тела 🛞
	Преобразование пове посредством массии зеркального ото выполняется «Копировать тела»	ерхностей вов или ображения функцией

– Афинные преобразования

Аффинным преобразованием называется равномерные растяжения (сжатия) геометрических объектов.

Преобразование плоскости называется **аффинным**, если оно взаимно однозначно и образом любой прямой является прямая. Преобразование называется **взаимно однозначным**, если оно разные точки переводит в разные, и в каждую точку переходит какая-то точка.

≻ Подводя итоги...

Мы изучили инструментарий, позволяющий выполнять типовые операции с поверхностями, и научились :

✓соединять поверхности (создавать одно тело поверхности из различных поверхностей);

√обрезать поверхности;

✓скруглять поверхности, используя различные способы скругления по кромкам, скругления граней и полного скруглений;

√удлинять поверхности;

√выполнять преобразования поверхностей.

Практикум к Лекции 7

-ПРАКТИЧЕСКОЕ УПРАЖНЕНИЕ 7

Создание поверхностей

Выполните операции над поверхностями, описывающими корпус мыши.

Тема о5 Гибридное моделирование

Вы изучите различные способы взаимодействия поверхностей с твердыми телами

ЛЕКЦИЯ 8

- > Что такое гибридное моделирование
- > Операции гибридного моделирования
- > Рекомендации по операциям гибридного моделирования

Уто такое гибридное моделирование?

Для придания изделию окончательной формы требуется интегрировать в твердотельную модель поверхности и выполнить совместные операции. Операции, в которых поверхности и твердотельная геометрия используются совместно - называются *гибридным моде*лированием.

✓ Гибридное моделирование используется для получения окончательной формы модели.

 Изменение формы поверхностей влияет на форму твердотельной модели.

≻ Операции гибридного моделирования

Вы научитесь создавать и видоизменять твердые тела при помощи поверхностей

– Для чего твердотельную геометрию создают на основе поверхностей

Поверхности могут потребоваться для получения твердотельной модели сложной формы. Поверхности интегрируются в процесс построения твердого тела.

Поверхности можно использовать для:

- создания вырезов в твердом теле;
- придания толщины с образованием твердого тела;
- образования твердого тела из поверхностей, формирующих замкнутый объем

– Интерфейс

Команды операций гибридного моделирования могут быть вызваны из выпадающих меню.

- 😵 Переместить/Копировать...
- 🕅 Удалить тело...

> Рекомендации по гибридному моделированию

Из поверхностей, формирующих замкнутый объем, можно создать твердое тело. поверх...

Эта функция присутствует в командах Сшить поверхность

Придать Придать толщину толщину

≻ Подводя итоги...

Мы изучили инструментарий гибридного моделирования Solidworks :

√как выполнять вырезы поверхностью в твердом теле;

√как придавать толщину поверхности;

√как формировать твердое тело из замкнутого объема поверхностей.

Практикум к Лекции 8

-ПРАКТИЧЕСКОЕ УПРАЖНЕНИЕ 8

Гибридное моделирование

Ð

Выполните операции гибридного моделирования, придающие модели мыши окончательную форму.

